viernes, 29 de agosto de 2008

COMENTARIO:

EL DIAGRAMA DE ARBOL ES HERRAMIENTA QUE NOS FACILITA FABRICAR CUALQUIER TIPO DE AGRUPACION YA SEA PERMUTACIONES Y VARIACIONES...

DIAGRAMA DE ARBOL.

I. DIAGRAMA DE ARBOL.

Un diagrama de árbol es una representación gráfica de un experimento que consta de r pasos, donde cada uno de los pasos tiene un número finito de maneras de ser llevado a cabo.

Ejemplos:
1.Un médico general clasifica a sus pacientes de acuerdo a: su sexo (masculino o femenino), tipo de sangre (A, B, AB u O) y en cuanto a la presión sanguínea (Normal, Alta o Baja). Mediante un diagrama de árbol diga en cuantas clasificaciones pueden
estar los pacientes de este médico?

N
Solución: A
A B
N
B A
B
M AB N
A
O B


A
N
F B A
B
AB
B
O A

B



Si contamos todas las ramas terminales, nos damos cuenta que el número de clasificaciones son 2 x 4 x 3 = 24 mismas que podemos enumerar;
MAN, MAA, MAB, MBN, MBA, MBB, etc, etc.



1) Dos equipos denominados A y B se disputan la final de un partido de baloncesto, aquel equipo que gane dos juegos seguidos o complete un total de tres juegos ganados será el que gane el torneo. Mediante un diagrama de árbol diga de cuantas maneras puede ser ganado este torneo,



Solución:


A = gana el equipo A
B = gana el equipo B


A
A
A A
B A
B
B B


A
A A
A
B B B
B
B


En este diagrama se muestran que hay solo diez maneras de que se gane el torneo, que se obtienen contando las ramas terminales de este diagrama de árbol, las que es posible enumerar;
AA, ABB, ABAA, ABABA, ABABB, etc, etc.



2) Un hombre tiene tiempo de jugar ruleta cinco veces como máximo, él empieza a jugar con un dólar, apuesta cada vez un dólar y puede ganar o perder en cada juego un dólar, él se va a retirar de jugar si pierde todo su dinero, si gana tres dólares (esto es si completa un total de cuatro dólares) o si completa los cinco juegos, mediante un diagrama de árbol, diga cuántas maneras hay de que se efectué el juego de este hombre.



Solución:


$4 G $4
G $3
$3 G
G P $2
P G$3
$2 P
$1 P $0
$3 G $4
$2 G
$1 G $2
G P $2
G $2
P P
$1 P $1
P $0 P $0
$0



Si contamos las ramas terminales nos daremos cuenta que hay 11 maneras de que este hombre lleve a cabo sus apuestas, en este diagrama se han representado los cinco juegos o apuestas que este hombre tiene tiempo de jugar.

COMENTARIO:

son problemads que relacionan dos conjuntos mediante operaciones de uniòn, intersecciòn y diferencia. permite obtener datos que tienen relaciòn con los conjuntos dados...

TEORIA DE CONTEO:

TEORÍAS DE CONTEO
Permutaciones y combinaciones: Contar el número de eventos que cumplen con algún conjunto de condiciones. Sirven para calcular la probabilidad de un evento cuando el número de eventos posibles es muy grande.
Factoriales: Dado un número entero positivo n el producto de todos los enteros desde n hasta 1 se llama factorial de n y se denota como n!. Ejemplo:
5! = 5 * 4 * 3 * 2 * 1
en notación: n! = n * (n-1) * (n-2) * ... 1
por definición 0! = 1
otra notación: 5! = 5 * 4!
n! = n (n-l)
Los factoriales sc usan para saber el número de formas en que se pueden organizar los objetos. Ejemplo:
cuatro envases con medio de cultivo y en cada uno de ellos se incuba un organismo diferente. ¿En cuantas formas se pueden acomodar en una incubadora?
4! =4 3 * 2 * 1 = 24 maneras
Para saber cuales son las formas de colocarlos se realiza un diagrama de árbol (ver Diagrama 1).

TEORIA DE CONTEO

COMENTARIO :

LA PERMUTACIÒN ES TODO ARREGLO DE ELEMENTOS EN DONDE NOS INTERESA EL LUGAR O POSICIÒN QUE OCUPA CADA UNO DE LOS ELEMENTOS QUE CONSTITUYE DICHO ARREGLO PARA PODER VER DE UNA MANERA OBJETIVA LA DIFERENCIA ENTRE UNA COMBINACIÒN Y UNA PERMUTACIÒN...

PERMUTACIONES:

Permutaciones
Una permutación es una combinación en donde el orden es importante. La notación para permutaciones es P(n,r) que es la cantidad de permutaciones de “n” elementos si solamente se seleccionan “r”.
Ejemplo: Si nueve estudiantes toman un examen y todos obtienen diferente calificación, cualquier alumno podría alcanzar la calificación más alta. La segunda calificación más alta podría ser obtenida por uno de los 8 restantes. La tercera calificación podría ser obtenida por uno de los 7 restantes.
La cantidad de permutaciones posibles sería: P(9,3) = 9*8*7 = 504 combinaciones posibles de las tres calificaciones más altas.

COMENTARIO A CERCA DE LA COMBINACIÒN:

ES UNA FORMA DE AGRUPAR LOS ELEMENTOS DE UN CONJUNTO RELATIVAMENTE LARGA DE MOVIMIENTOS ES CAMBIADA DE ACUERDO AL ELEMENTO QUE COMPONE LA CAJA YA QUE TODOS LOS ELEMENTOS QUE CONTIENE SE PUEDE CUANTIFICAR, TOMANDO EN CUENTA QUE NO IMPORTA EL ORDEN EN QUE SE COLOCAN Y AL FINAL DA UN NÙMERO DE TALES COMBINACIONES...

COMBINACIÒN:

COMBINACIONES

Las combinaciones son aquellas formas de agrupar los elementos de un conjunto teniendo en cuenta que:
NO influye el orden en que se colocan.
Si permitimos que se repitan los elementos, podemos hacerlo hasta tantas veces como elementos tenga la agrupación.
Existen dos tipos:
combinaciones sin repetición y combinaciones con repetición, cuyos símbolos son los siguientes. .

jueves, 21 de agosto de 2008

EXPERIMENTOS ALEATORIOS...

4.4 Experimentos y sucesos aleatorios
Diremos que un experimento es aleatorio si se verifican las siguientes condiciones:
1.
Se puede repetir indefinidamente, siempre en las mismas condiciones;
2.
Antes de realizarlo, no se puede predecir el resultado que se va a obtener;
3.
El resultado que se obtenga, e, pertenece a un conjunto conocido previamente de resultados posibles. A este conjunto, de resultados posibles, lo denominaremos espacio muestral y lo denotaremos normalmente mediante la letra E. Los elementos del espacio muestral se denominan sucesos elementales.

Cualquier subconjunto de E será denominado suceso aleatorio, y se denotará normalmente con las letras A, B,...

Obsérvese que los sucesos elementales son sucesos aleatorios compuestos por un sólo elemento. Por supuesto los sucesos aleatorios son más generales que los elementales, ya que son conjuntos que pueden contener no a uno sólo, sino a una infinidad de sucesos elementales --y también no contener ninguno.-- Sucesos aleatorios que aparecen con gran frecuencia en el cálculo de probabilidades son los siguientes:
4.4.0.0.0.1 Suceso seguro: Es aquel que siempre se verifica después del experimento aleatorio, es decir, el mismo E

4.4.0.0.0.2 Suceso imposible: Es aquel que nunca se verifica como resultado del experimento aleatorio. Como debe ser un subconjunto de E, la única posibilidad es que el suceso imposible sea el conjunto vacío

4.4.0.0.0.3 Suceso contrario a un suceso A: También se denomina complementario de A y es el suceso que se verifica si, como resultado del experimento aleatorio, no se verifica A. Se acostumbra a denotar con el símbolo


Figura: Representación gráfica de un suceso aleatorio , y de su suceso contrario

4.4.0.1 Ejemplo Si realizamos el experimento aleatorio de lanzar un dado al aire, tenemos:

SUCESO ELEMENTALES:.......1,2,3,4,5,6
ESPACIO MUESTRAL:.........E= {,2,3,4,5,6}

SUCESOS ALEATORIOS........{0 ucesos imposibles.
E sucesos seguros
{1,2,3}
{4,5}
{2,4,6}= ---------
{1,2,3}

COMENTARIO SOBRE EXPERIMENTOS QUE NO SON ALEATORIOS...

CUANDO UNA MONEDA TIENE LA MISMA CARA...... NO ES UN OBJETO DEL ESTUDIO DE LA PROBABILIDAD

COMENTARIO......

La teoría de la probabilidad es la teoría matemática que modela los fenómenos aleatorios. cuando hablamos sobre lo que es aleatorio: es decir que puede representar diversos resultados dentro de un conjunto de posibles de soluciones en si la palabra aleatorio significa por ejemplo si lanzamos una moneda ahi tenemos dos posibles resultados, esta la cara, y el escudo. Estos son los fenómenos determinísticos, en los cuales el resultado de un experimento, realizado bajo condiciones determinadas, produce un resultado único o y previsto: por ejemplo, el agua calentada a 100 grados centígrados, a presión normal, se transforma en vapor. Un fenómeno aleatorio es aquel que, a pesar de realizarse el experimento bajo las mismas condiciones determinadas, tiene como resultados posibles un conjunto de alternativas, como el lanzamiento de un dado o de una moneda.
Los procesos reales que se modelizan como procesos aleatorios pueden no serlo realmente; cómo tirar una moneda o un dado no son procesos aleatorios en sentido estricto, ya que no se reproducen exactamente las mismas condiciones iniciales que lo determinan, sino sólo unas pocas. En los procesos reales que se modelizan mediante distribuciones de probabilidad corresponden a modelos complejos donde no se conocen a priori todos los parámetros que intervienen; ésta es una de las razones por las cuales la estadística, que busca determinar estos parámetros, no se reduce inmediatamente a la teoría de la probabilidad en sí.

INTERPRETACION DE LA PROBABILIDAD Y SU HISTORIA

La palabra probabilidad no tiene una definición consistente. De hecho hay dos amplias categorías de interpretaciones de la probabilidad: los frecuentistas hablan de probabilidades sólo cuando se trata de experimentos aleatorios bien definidos. La frecuencia relativa de ocurrencia del resultado de un experimento, cuando se repite el experimento, es una medida de la probabilidad de ese suceso aleatorio. Los bayesianos, no obstante, asignan las probabilidades a cualquier declaración, incluso cuando no implica un proceso aleatorio, como una manera de representar su verosimilitud subjetiva.

Historia [editar]
Véase también: Estadística
El estudio científico de la probabilidad es un desarrollo moderno. Los juegos de azar muestran que ha habido un interés en cuantificar las ideas de la probabilidad durante milenios, pero las descripciones matemáticas exactas de utilidad en estos problemas sólo surgieron mucho después.
Según Richard Jeffrey, "Antes de la mitad del siglo XVII, el término 'probable' (en latín probable) significaba aprobable, y se aplicaba en ese sentido, unívocamente, a la opinión y a la acción. Una acción u opinión probable era una que las personas sensatas emprenderían o mantendrían, en las circunstancias."[1]
Aparte de algunas consideraciones elementales hechas por Girolamo Cardano en el siglo XVI, la doctrina de las probabilidades data de la correspondencia de Pierre de Fermat y Blaise Pascal (1654). Christiaan Huygens (1657) le dio el tratamiento científico conocido más temprano al concepto. Ars Conjectandi (póstumo, 1713) de Jakob Bernoulli y Doctrine of Chances (1718) de Abraham de Moivre trataron el tema como una rama de las matemáticas. Véase El surgimiento de la probabilidad (The Emergence of Probability) de Ian Hacking para una historia de los inicios del desarrollo del propio concepto de probabilidad matemática.
La teoría de errores puede trazarse atrás en el tiempo hasta Opera Miscellanea (póstumo, 1722) de Roger Cotes, pero una memoria preparada por Thomas Simpson en 1755 (impresa en 1756) aplicó por primera vez la teoría para la discusión de errores de observación. La reimpresión (1757) de esta memoria expone los axiomas de que los errores positivos y negativos son igualmente probables, y que hay ciertos límites asignables dentro de los cuales se supone que caen todos los errores; se discuten los errores continuos y se da una curva de la probabilidad.
Pierre-Simon Laplace (1774) hizo el primer intento para deducir una regla para la combinación de observaciones a partir de los principios de la teoría de las probabilidades. Representó la ley de la probabilidad de error con una curva y = φ(x), siendo x cualquier error e y su probabilidad, y expuso tres propiedades de esta curva:
es simétrica al eje y;
el eje x es una asíntota, siendo la probabilidad del error igual a 0;
la superficie cerrada es 1, haciendo cierta la existencia de un error.
Dedujo una fórmula para la media de tres observaciones. También obtuvo (1781) una fórmula para la ley de facilidad de error (un término debido a Lagrange, 1774), pero una que llevaba a ecuaciones inmanejables. Daniel Bernoulli (1778) introdujo el principio del máximo producto de las probabilidades de un sistema de errores concurrentes.
El método de mínimos cuadrados se debe a Adrien-Marie Legendre (1805), que lo introdujo en su Nouvelles méthodes pour la détermination des orbites des comètes (Nuevos métodos para la determinación de las órbitas de los cometas). Ignorando la contribución de Legendre, un escritor irlandés estadounidense, Robert Adrain, editor de "The Analyst" (1808), dedujo por primera vez la ley de facilidad de error,

siendo c y h constantes que dependen de la precisión de la observación. Expuso dos demostraciones, siendo la segunda esencialmente la misma de John Herschel (1850). Gauss expuso la primera demostración que parece que se conoció en Europa (la tercera después de la de Adrain) en 1809. Demostraciones adicionales se expusieron por Laplace (1810, 1812), Gauss (1823), James Ivory (1825, 1826), Hagen (1837), Friedrich Bessel (1838), W. F. Donkin (1844, 1856) y Morgan Crofton (1870). Otros personajes que contribuyeron fueron Ellis (1844), De Morgan (1864), Glaisher (1872) y Giovanni Schiaparelli (1875). La fórmula de Peters (1856) para r, el error probable de una única observación, es bien conocida.
En el siglo XIX, los autores de la teoría general incluían a Laplace, Sylvestre Lacroix (1816), Littrow (1833), Adolphe Quetelet (1853), Richard Dedekind (1860), Helmert (1872), Hermann Laurent (1873), Liagre, Didion, y Karl Pearson. Augustus De Morgan y George Boole mejoraron la exposición de la teoría.
En la parte geométrica (véase geometría integral) los colaboradores de The Educational Times fueron influyentes (Miller, Crofton, McColl, Wolstenholme, Watson y Artemas Martin).

Teoría [editar]
Artículo principal: Teoría de la probabilidad
La probabilidad constituye un importante parametro en la determinacion de las diversas causalidades obtenidas tras una serie de eventos esperados dentro de un rango estadistico.
Existen diversas formas como metodo abstracto, como la teoría Dempster-Shafer y la teoría de la relatividad numerica, esta ultima con un alto grado de aceptacion si se toma en cuenta que disminuye considerablemente las posibilidades hasta un nivel minimo ya que somete a todas las antiguas reglas a una simple ley de relatividad.

Aplicaciones [editar]
Dos aplicaciones principales de la teoría de la probabilidad en el día a día son en el análisis de riesgo y en el comercio de los mercados de materias primas. Los gobiernos normalmente aplican métodos probabilísticos en regulación ambiental donde se les llama "análisis de vías de dispersión", y a menudo miden el bienestar usando métodos que son estocásticos por naturaleza, y escogen qué proyectos emprender basándose en análisis estadísticos de su probable efecto en la población como un conjunto. No es correcto decir que la estadística está incluida en el propio modelado, ya que típicamente los análisis de riesgo son para una única vez y por lo tanto requieren más modelos de probabilidad fundamentales, por ej. "la probabilidad de otro 11-S". Una ley de números pequeños tiende a aplicarse a todas aquellas elecciones y percepciones del efecto de estas elecciones, lo que hace de las medidas probabilísticas un tema político.
Un buen ejemplo es el efecto de la probabilidad percibida de cualquier conflicto generalizado sobre los precios del petróleo en Oriente Medio - que producen un efecto dominó en la economía en conjunto. Un cálculo por un mercado de materias primas en que la guerra es más probable en contra de menos probable probablemente envía los precios hacia arriba o hacia abajo e indica a otros comerciantes esa opinión. Por consiguiente, las probabilidades no se calculan independientemente y tampoco son necesariamente muy racionales. La teoría de las finanzas conductuales surgió para describir el efecto de este pensamiento de grupo en el precio, en la política, y en la paz y en los conflictos.
Se puede decir razonablemente que el descubrimiento de métodos rigurosos para calcular y combinar los cálculos de probabilidad ha tenido un profundo efecto en la sociedad moderna. Por consiguiente, puede ser de alguna importancia para la mayoría de los ciudadanos entender cómo se cálculan los pronósticos y las probabilidades, y cómo contribuyen a la reputación y a las decisiones, especialmente en una democracia.
Otra aplicación significativa de la teoría de la probabilidad en el día a día es en la fiabilidad. Muchos bienes de consumo, como los automóviles y la electrónica de consumo, utilizan la teoría de la fiabilidad en el diseño del producto para reducir la probabilidad de avería. La probabilidad de avería también está estrechamente relacionada con la garantía del producto.
Se puede decir que no existe una cosa llamada probabilidad. También se puede decir que la probabilidad es la medida de nuestro grado de incertidumbre, o esto es, el grado de nuestra ignorancia dada una situación. Por consiguiente, puede haber una probabilidad de 1 entre 52 de que la primera carta en un baraja de cartas es la J de diamantes. Sin embargo, si uno mira la primera carta y la reemplaza, entonces la probabilidad es o bien 100% o 0%, y la elección correcta puede ser hecha con precisión por el que ve la carta. La física moderna proporciona ejemplos importantes de situaciones determinísticas donde sólo la descripción probabilística es factible debido a información incompleta y la complejidad de un sistema así como ejemplos de fenómenos realmente aleatorios.
En un universo determinista, basado en los conceptos newtonianos, no hay probabilidad si se conocen todas las condiciones. En el caso de una ruleta, si la fuerza de la mano y el periodo de esta fuerza es conocido, entonces el número donde la bola parará será seguro. Naturalmente, esto también supone el conocimiento de la inercia y la fricción de la ruleta, el peso, lisura y redondez de la bola, las variaciones en la velocidad de la mano durante el movimiento y así sucesivamente. Una descripción probabilística puede entonces ser más práctica que la mecánica newtoniana para analizar el modelo de las salidas de lanzamientos repetidos de la ruleta. Los físicos se encuentran con la misma situación en la teoría cinética de los gases, donde el sistema determinístico en principio, es tan complejo (con el número de moléculas típicamente del orden de magnitud de la constante de Avogadro ) que sólo la descripción estadística de sus propiedades es viable.
La mecánica cuántica, debido al principio de indeterminación de Heisenberg, sólo puede ser descrita actualmente a través de distribuciones de probabilidad, lo que le da una gran importancia a las descripciones probabilísticas. Algunos científicos hablan de la expulsión del paraíso.[cita requerida] Otros no se conforman con la pérdida del determinismo. Albert Einstein comentó estupendamente en una carta a Max Born: Jedenfalls bin ich überzeugt, daß der Alte nicht würfelt. (Estoy convencido de que Dios no tira el dado). No obstante hoy en día no existe un medio mejor para describir la física cuántica si no es a través de la teoría de la probabilidad. Mucha gente hoy en día confunde el hecho de que la mecánica cuántica se describe a través de distribuciones de probabilidad con la suposición de que es por ello un proceso aleatorio, cuando la mecánica cuántica es probabilística no por el hecho de que siga procesos aleatorios sino por el hecho de no poder determinar con precisión sus parámetros fundamentales, lo que imposibilita la creación de un sistema de ecuaciones determinista.

LA PROBABILIDAD

La probabilidad mide la frecuencia con la que ocurre un resultado en un experimento bajo condiciones suficientemente estables. La teoría de la probabilidad se usa extensamente en áreas como la estadística, la matemática, la ciencia y la filosofía para sacar conclusiones sobre la probabilidad La palabra probabilidad no tiene una definición consistente. De hecho hay dos amplias categorías de interpretaciones de la probabilidad: los frecuentistas hablan de probabilidades sólo cuando se trata de experimentos aleatorios bien definidos. La frecuencia relativa de ocurrencia del resultado de un experimento, cuando se repite el experimento, es una medida de la probabilidad de ese suceso aleatorio. Los bayesianos, no obstante, asignan las probabilidades a cualquier declaración, incluso cuando no implica un proceso aleatorio, como una manera de representar su verosimilitud subjetiva.de sucesos potenciales y la mecánica subyacente de sistemas complejos.